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Abstract

The frequency equation and localized modes in two-dimensional bi-periodic mass–spring systems with
one disordered subsystem are exactly analyzed by means of double U-transformation.
At first a plane distributed mass–spring system with 2n1 � 2n2 subsystems and cyclic periodicity in x- and

y-directions is considered. Then by adopting a limiting process with n1; n2 approaching to infinity, the
limiting solution is applicable for the plane distributed bi-periodic mass–spring systems with boundary at
infinity.
The explicit frequency equation and localized modes are derived. Some specific systems are taken as

examples to demonstrate how to apply the formulas and equations obtained in the present paper in order to
find the localized modes and corresponding frequencies.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Analyses of bi-periodic systems have been studied by using various methods, including transfer
matrix method [1], wave approach [2–4], standard stiffness and transmission methods [5] and U-
transformation method [6–10]. Vibration analyses of disordered periodic systems have been
investigated by Bansal [11] and Mead et al. [12–14] using receptance method.
Localization phenomenon was first predicted by Anderson [15] in the field of solid-state physics. In

structural dynamics, Hodges [16] was the earliest to study localized modes in one-dimensional periodic
see front matter r 2005 Elsevier Ltd. All rights reserved.
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structures. There is a great volume of literature on localization. A detailed discussion of that literature
is contained in the special issue of Chaos, Solitons and Fractals on localization problems [17].
Mode localization phenomenon in infinite periodic mass–spring systems having one linear or

nonlinear disorder was investigated by Cai et al. [18–20] using the U-transformation method. Recently
the U-transformation method was extended to analyze the localized modes in infinite bi-periodic
mass–spring systems with a single disorder [21]. In order to derive the frequency equation for localized
modes, the U-transformation must be used twice. In the present study, two-dimensional bi-periodic
mass–spring systems having one disorder are considered. In order to uncouple the governing equation
of the bi-periodic systems, the double U-transformation needs to be used twice [22].
2. Governing equation

Consider a two-dimensional infinite bi-periodic mass–spring system with a single disorder as
shown in Fig. 1. This system consists of two different kinds of subsystems, say M- and M 0-
subsystems, where only one subsystem departs from the regularity in both stiffness and mass. M,
M 0 and M 0 þ Md denote the masses, and K , K 0 and K 0 þ Kd denote the stiffness for M-, M 0- and
disordered subsystems, respectively. In Fig. 1, two sets of pretensioned straight strings with fixed
ends at infinity act as the coupling springs between two adjacent subsystems in x- and y-directions.
The stiffness of coupling spring in x- and y-directions can be expressed as K1 ¼ T1=a and
K2 ¼ T2=b, respectively, where T1, T2 denote the pretentions of the strings in x- and y-directions
and a, b denote the spacing of y- and x-strings, respectively.
The localized modes in an infinite periodic system are negligibly affected by the conditions at

infinity. Consequently, the system under consideration may be regarded as cyclic bi-periodic as
shown in Fig. 2. At first, the two-dimensional cyclic bi-periodic system with 2n1 � 2n2 subsystems
is considered. In Fig. 2, a pair of integers ð j; kÞ denote a subsystem in which j and k in the round
brackets denote the ordinal numbers of the subsystem along x- and y-directions, respectively. The
identical relations ð0; kÞ � ð2n1; kÞ; k ¼ 0; 1; 2; . . . ; 2n2 and ð j; 0Þ � ð j; 2n2Þ; j ¼ 0; 1; 2; . . . ; 2n1
represent the cyclic periodicity in x- and y-directions, respectively. Then by adopting a limiting
process with n1, n2 approaching to infinity, the governing equation and its solution will be
applicable for the original system shown in Fig. 1.
Applying Newton’s second law to every subsystem, the natural vibration equations can be

expressed as

ðK þ 2K1 þ 2K2 � Mo2Þwðj;kÞ � K1ðwðjþ1;kÞ þ wðj�1;kÞÞ

� K2ðwðj;kþ1Þ þ wðj;k�1ÞÞ ¼ F ðj;kÞ; j ¼ 1; 2; . . . ; 2n1; k ¼ 1; 2; . . . ; 2n2 ð1aÞ

and

F ðj;kÞ ¼

ðDMo2 � DKÞwðj;kÞ; ð j; kÞ ¼ ðj1p1; k1p2Þ and ð j; kÞaðn1; n2Þ;

½ðDM þ MdÞo2 � ðDK þ KdÞ
wðj;kÞ; ð j; kÞ ¼ ðn1; n2Þ;

0; ð j; kÞaðj1p1; k1p2Þ;

8>><
>>:

n1 � m1p1; n2 � m2p2; j1 ¼ 1; 2; . . . ; 2m1; k1 ¼ 1; 2; . . . ; 2m2, ð1bÞ
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Fig. 1. Two-dimensional bi-periodic mass–spring system with one disorder.
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where wðj;kÞ denotes the amplitude of displacement (in z-direction) for the ð j; kÞ subsystem; o
represents the natural frequency; Md , Kd denote the magnitudes of disorder for mass and stiffness
and DM ¼ M 0 � M, DK ¼ K 0 � K ; ðj1p1; k1p2Þ, j1 ¼ 1; 2; . . . ; 2m1; k1 ¼ 1; 2; . . . ; 2m2 represents
the M 0-subsystems, and ðm1p1;m2p2Þ denotes the disordered one. Without loss of generality, it is
assumed that the disordered subsystem is located at the center of the considered system as shown
in Fig. 2. In Eq. (1a), it should be noted that wð2n1þ1;kÞ � wð1;kÞ, wð0;kÞ � wð2n1;kÞ and
wðj;2n2þ1Þ � wðj;1Þ, wðj;0Þ � wðj;2n2Þ due to the cyclic periodicity in x- and y-directions.
3. The first application of the double U-transformation

The left-hand sides of Eq. (1a) possess cyclic periodicity for two subscripts in the round
brackets where the two subscripts represent two ordinal numbers of the subsystem and F ðj;kÞ on
the right-hand sides of Eq. (1a) act as the loads. In order to uncouple the left-hand sides of the
simultaneous equations (1a), one can now apply the double U-transformation [23] to Eq. (1a).
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Fig. 2. Equivalent system with 2n1 � 2n2 subsystems and cyclic bi-periodicity in x- and y-directions.
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Let

qðr;sÞ ¼
1ffiffiffiffiffiffiffi

2n1
p ffiffiffiffiffiffiffi

2n2
p

X2n1

j¼1

X2n2

k¼1

e�iðj�1Þrc1e�iðk�1Þsc2wðj;kÞ; r ¼ 1; 2; . . . ; 2n1; s ¼ 1; 2; . . . ; 2n2 (2a)

and its inverse transformation is

wðj;kÞ ¼
1ffiffiffiffiffiffiffi

2n1
p ffiffiffiffiffiffiffi

2n2
p

X2n1

r¼1

X2n2

s¼1

eiðj�1Þrc1eiðk�1Þsc2qðr;sÞ; j ¼ 1; 2; . . . ; 2n1; k ¼ 1; 2; . . . ; 2n2, (2b)

where i ¼
ffiffiffiffiffiffiffi
�1

p
, c1 ¼ p=n1, c2 ¼ p=n2 and c1, c2 denote the periods of the cyclic periodic system

for M-subsystems in x- and y-directions, respectively.
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The right-hand side of Eq. (2b) can be regarded as the series of rotating modes [24] for the
ordered cyclic periodic system (i.e., DM ¼ 0, DK ¼ 0, Md ¼ 0, Kd ¼ 0) and rc1, sc2 denote the
phase differences between the two adjacent subsystems in x- and y-directions, respectively.
qðr;sÞ ðr ¼ 1; 2; . . . ; 2n1; s ¼ 1; 2; . . . ; 2n2Þ is a set of generalized displacements.
The natural vibration equations (1a) can be expressed in terms of the generalized displacements

qðr;sÞ as

ðK þ 2K1 þ 2K2 � Mo2 � 2K1 cos rc1 � 2K2 cos sc2Þqðr;sÞ

¼ f ðr;sÞ; r ¼ 1; 2; . . . ; 2n1; s ¼ 1; 2; . . . ; 2n2, ð3aÞ

where

f ðr;sÞ ¼
DMo2 � DKffiffiffiffiffiffiffi
2n1

p ffiffiffiffiffiffiffi
2n2

p
X2m1

j1¼1

X2m2

k1¼1

e�iðj1p1�1Þrc1e�iðk1p2�1Þsc2wðj1p1;k1p2Þ

þ
Mdo2 � Kdffiffiffiffiffiffiffi
2n1

p ffiffiffiffiffiffiffi
2n2

p e�iðn1�1Þrc1e�iðn2�1Þsc2wðn1;n2Þ. ð3bÞ

Introducing qðr;sÞ obtained from Eqs. (3a) and (3b) into Eq. (2b) results in

wðj;kÞ ¼ ðDMo2 � DKÞ
X2m1

j1¼1

X2m2

k1¼1

b0ðj;kÞðj1p1;k1p2Þwðj1p1;k1p2Þ

þ ðMdo2 � Kd Þb
0
ðj;kÞðn1;n2Þ

wðn1;n2Þ; j ¼ 1; 2; . . . ; 2n1; k ¼ 1; 2; . . . ; 2n2 ð4Þ

and

b0ðj;kÞðu;vÞ ¼
1

4n1n2

X2n1

r¼1

X2n2

s¼1

eiðj�uÞrc1eiðk�vÞsc2

K þ 2K1 þ 2K2 � Mo2 � 2K1 cos rc1 � 2K2 cos sc2
, (5)

which denotes the harmonic influence coefficient (i.e., receptance) for the single perfectly periodic
system with the parameters DK , DM, Kd and Md vanishing.
Let

W ðj;kÞ � wðjp1;kp2Þ; j ¼ 1; 2; . . . ; 2m1; k ¼ 1; 2; . . . ; 2m2. (6)

Here W ðj;kÞ denotes the displacement for ðj; kÞM
0-subsystem, i.e., the jth (kth) M 0-subsystem in

x- (y-) direction.
From Eq. (4), we can obtain the simultaneous equations with unknowns W ðj;kÞ as

W ðj;kÞ � ðDMo2 � DKÞ
X2m1

u¼1

X2m2

v¼1

bðj;kÞðu;vÞW ðu;vÞ ¼ W �
ðj;kÞ; j ¼ 1; 2; . . . ; 2m1; k ¼ 1; 2; . . . ; 2m2

(7a)

and

W �
ðj;kÞ ¼ ðMdo2 � Kd Þbðj;kÞðm1;m2Þ

W ðm1;m2Þ, (7b)
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bðj;kÞðu;vÞ � b0ðjp1;kp2Þðup1;vp2Þ
¼

1

4n1n2

X2n1

r¼1

X2n2

s¼1

eiðj�uÞrj1eiðk�vÞsj2

K þ 2K1 þ 2K2 � Mo2 � 2K1 cos rc1 � 2K2 cos sc2
,

(7c)

where

j1 ¼ p1c1 ¼ p=m1; j2 ¼ p2c2 ¼ p=m2 (8)

and W �
ðj;kÞ indicates the influence of disorder on W ðj;kÞ.

By using the double U-transformation once, the natural vibration equations (1a) and (1b)
having 2m1p1 � 2m2p2 unknowns become Eqs. (7a) and (7b) with 2m1 � 2m2 unknowns (i.e., the
displacements of M 0-subsystems).
4. The second application of the double U-transformation

It is obvious that the harmonic influence coefficients for the cyclic periodic system possess cyclic
periodicity. Consequently, the left-hand sides of the simultaneous equations (7a) possess cyclic
periodicity. In order to uncouple the left-hand sides of Eq. (7a), one can now apply again the
double U-transformation to Eq. (7a).
Let

Qðr;sÞ ¼
1ffiffiffiffiffiffiffiffi

2m1

p ffiffiffiffiffiffiffiffi
2m2

p
X2m1

j¼1

X2m2

k¼1

e�iðj�1Þrj1e�iðk�1Þsj2W ðj;kÞ; r ¼ 1; 2; . . . ; 2m1; s ¼ 1; 2; . . . ; 2m2 (9)

and its inverse is

W ðj;kÞ ¼
1ffiffiffiffiffiffiffiffi

2m1

p ffiffiffiffiffiffiffiffi
2m2

p
X2m1

r¼1

X2m2

s¼1

eiðj�1Þrj1eiðk�1Þsj2Qðr;sÞ; j ¼ 1; 2; . . . ; 2m1; k ¼ 1; 2; . . . ; 2m2 (10)

in which the definitions of j1 and j2 are the same as those shown in Eq. (8). j1, j2 denote the
periods of the cyclic periodic system for M 0-subsystems in x- and y-directions, respectively.
Introducing the double U-transformation (9) into Eqs. (7a)–(7b) and noting the cyclic

periodicity of bðj;kÞðu;vÞ results in

Qðr;sÞ � ðDMo2 � DKÞ
X2m1

u¼1

X2m2

v¼1

e�iðu�1Þrj1e�iðv�1Þsj2bðu;vÞð1;1ÞQðr;sÞ

¼ Q�
ðr;sÞ; r ¼ 1; 2; . . . ; 2m1; s ¼ 1; 2; . . . ; 2m2, ð11aÞ

where

Q�
ðr;sÞ ¼

ðMdo2 � KdÞW ðm1;m2Þffiffiffiffiffiffiffiffi
2m1

p ffiffiffiffiffiffiffiffi
2m2

p
X2m1

j¼1

X2m2

k¼1

e�iðj�1Þrj1e�iðk�1Þsj2bðj;kÞðm1;m2Þ
. (11b)

Substituting Eq. (7c) into Eqs. (11a)–(11b) yields

Qðr;sÞ � ðDMo2 � DKÞAðrj1; sj2;o
2ÞQðr;sÞ ¼ Q�

ðr;sÞ; r ¼ 1; 2; . . . ; 2m1; s ¼ 1; 2; . . . ; 2m2 (12a)
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and

Q�
ðr;sÞ ¼

ðMdo2 � Kd ÞW ðm1;m2Þffiffiffiffiffiffiffiffi
2m1

p ffiffiffiffiffiffiffiffi
2m2

p eið1�m1Þrj1eið1�m2Þsj2Aðrj1; sj2;o
2Þ, (12b)

where

Aðrj1; sj2;o
2Þ ¼

1

p1p2

Xp1

u¼1

Xp2

v¼1

K þ 2K1 þ 2K2 � Mo2 � 2K1 cos½2m1ðu � 1Þ þ r

j1
p1

�

�2K2 cos½2m2ðv � 1Þ þ s

j2
p2

��1

. ð12cÞ

For the perfectly cyclic bi-periodic system without any disorder (i.e., Q�
ðr;sÞ ¼ 0), the frequency

equation can be obtained from Eq. (12a) as

1� ðDMo2 � DKÞAðrj1; sj2;o
2Þ ¼ 0; r ¼ 1; 2; . . . ; 2m1; s ¼ 1; 2; . . . ; 2m2. (13)

Inserting Qðr;sÞ obtained from Eqs. (12a) and (12b) into Eq. (10) results in

W ðj;kÞ ¼ ðMdo2 � Kd ÞW ðm1;m2Þb
�
ðj;kÞðm1;m2Þ

; j ¼ 1; 2; . . . ; 2m1; k ¼ 1; 2; . . . ; 2m2 (14)

and

b�ðj;kÞðm1;m2Þ
¼

1

4m1m2

X2m1

r¼1

X2m2

s¼1

cosðj � m1Þrj1 cosðk � m2Þsj2
Aðrj1; sj2;o

2Þ

1� ðDMo2 � DKÞAðrj1; sj2;o2Þ
,

(15)

where b�ðj;kÞðm1;m2Þ
denotes the harmonic influence coefficient for the cyclic bi-periodic system

without disorder and means the amplitude of ðj; kÞM 0-subsystem caused by unit harmonic force
acting at ðm1;m2ÞM

0-subsystem. W ðm1;m2Þ is the amplitude of displacement for the disordered
subsystem.
5. Frequency equation and localized modes

The frequency equation for the disordered system can be found from Eqs. (14) and (15) with
j ¼ m1 and k ¼ m2, as

Mdo2 � Kd ¼
1

b�ðm1;m2Þðm1;m2Þ

(16a)

and

b�ðm1;m2Þðm1;m2Þ
¼

1

4m1m2

X2m1

r¼1

X2m2

s¼1

Aðrj1; sj2;o
2Þ

1� ðDMo2 � DKÞAðrj1; sj2;o2Þ
. (16b)

The above frequency equation is applicable to the localized modes of the finite cyclic bi-periodic
system with a single disorder. We can now consider the infinite case, namely m1 and m2 approach
to infinity. The limit of the series summation on the right-hand side of Eq. (15) becomes the
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double integral and Eq. (15) can be rewritten as

b�ðm1
j;m2
kÞðm1;m2Þ
¼

1

4p2

Z 2p

0

Z 2p

0

cos jy1 cos ky2
Aðy1; y2;o2Þ

1� ðDMo2 � DKÞAðy1; y2;o2Þ
dy1 dy2,

j ¼ 0; 1; 2; . . . ;1; k ¼ 0; 1; 2; . . . ;1 ð17aÞ

in which

Aðy1; y2;o2Þ �
1

p1p2

Xp1

u¼1

Xp2

v¼1

K þ 2K1 þ 2K2 � Mo2 � 2K1 cos
ðu � 1Þ2pþ y1

p1


 ��

�2K2 cos
ðv � 1Þ2pþ y2

p2


 ���1

. ð17bÞ

By introducing Eq. (17a) into Eq. (16a), the frequency equation for the original infinite bi-periodic
system shown in Fig. 1 can be found as

Mdo2 � Kd ¼
1

4p2

Z 2p

0

Z 2p

0

Aðy1; y2;o2Þ
1� ðDMo2 � DKÞAðy1; y2;o2Þ

dy1 dy2

� ��1

. (18)

When m1, m2 approach infinity, the frequency equation (13) for the ordered system becomes the
pass band equation as

1� ðDMo2 � DKÞAðy1; y2;o2Þ ¼ 0; 0py1; y2p2p. (19)

It is obvious that if and only if o lies in the stop band, namely o is not any root of Eq. (19), the
double integral in Eq. (18) is in existence and the frequency equation (18) is applicable to the
localized modes.
Two parameters y1 and y2 in Eq. (19) indicate two mode phase differences between the two

adjacent M 0-subsystems in x- and y-directions, respectively. It can be proved that if y1, y2 are
replaced by 2p� y1, 2p� y2, respectively, the function Aðy1; y2;o2Þ shown in Eq. (17b) does not
change, leading to the frequency band equation (19) unchanged. Its physical meaning is that four
modes with two phase differences y1 or 2p� y1, and y2 or 2p� y2 correspond to a same
frequency. Hence, we consider only the case of 0py1; y2pp in Eq. (19) and Eqs. (18), (17a) can be
rewritten as

Mdo2 � Kd ¼
1

p2

Z p

0

Z p

0

Aðy1; y2;o2Þ
1� ðDMo2 � DKÞAðy1; y2;o2Þ

dy1 dy2

� ��1

, (20)

b�ðm1
j;m2
kÞðm1;m2Þ
¼
1

p2

Z p

0

Z p

0

cos jy1 cos ky2
Aðy1; y2;o2Þ

1� ðDMo2 � DKÞAðy1; y2;o2Þ
dy1 dy2. (21)

When the frequency of localized mode is found from Eq. (20), the corresponding mode can be
obtained from Eqs. (14) and (16a), as

W ðm1
j;m2
kÞ ¼ W ðm1;m2Þ

b�ðm1
j;m2
kÞðm1;m2Þ

b�ðm1;m2Þðm1;m2Þ

; j ¼ 0; 1; 2; . . . ;1; k ¼ 0; 1; 2; . . . ;1 (22)
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in which W ðm1;m2Þ acts as an arbitrary constant factor. Applying the well-known Riemann lemma
to Eq. (21) yields

lim
j or=and k!1

b�ðm1
j;m2
kÞðm1;m2Þ
¼ 0, (23)

which indicates the mode shown in Eq. (22) is localized.
6. Examples

In order to check the exactness of the formulas and demonstrate how to apply the formulas
obtained in the above, some example systems are given as follows.
6.1. Two-dimensional single-periodic system

By letting p1 ¼ 1 and p2 ¼ 1, the original bi-periodic system shown in Fig. 1 becomes single-
periodic one, namely all of subsystems are M 0-subsystems besides one disorder.
Introducing p1 ¼ 1 and p2 ¼ 1 into Eq. (17b) yields

Aðy1; y2;o2Þ ¼ ðK þ 2K1 þ 2K2 � Mo2 � 2K1 cos y1 � 2K2 cos y2Þ
�1. (24)

Substituting Eq. (24) into Eqs. (20) and (21) results in

Mdo2 � Kd ¼
1

p2

Z p

0

Z p

0

1

K 0 þ 2K1 þ 2K2 � M 0o2 � 2K1 cos y1 � 2K2 cos y2
dy1 dy2

� ��1

(25)

and

b�ðm1
j;m2
kÞðm1;m2Þ
¼
1

p2

Z p

0

Z p

0

cos jy1 cos ky2
K 0 þ 2K1 þ 2K2 � M 0o2 � 2K1 cos y1 � 2K2 cos y2

dy1 dy2 (26)

in which K 0 ¼ K þ DK and M 0 ¼ M þ DM.
The localized mode is also shown in Eq. (22) where b�ðm1
j;m2
kÞðm1;m2Þ

should be Eq. (26) instead
of Eq. (21).
The frequency equation (25) and the corresponding mode shown in Eqs. (22) and (26) are the

same as those given in Ref. [18].
6.2. One-dimensional bi-periodic system

When two arbitrary adjacent subsystems in y-direction are uncoupled, i.e., K2 ¼ 0, the original
system is uncoupled into a one-dimensional system having a disorder and many other one-
dimensional systems without disorder. We consider now the one-dimensional disordered system.
Substituting K2 ¼ 0 into Eq. (17b) results in

Aðy1; y2;o2Þ ¼ Aðy1;o2Þ ¼
1

p1

Xp1

u¼1

K þ 2K1 � Mo2 � 2K1 cos
ðu � 1Þ2pþ y1

p1


 �� ��1

. (27)
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Noting that the function Aðy1;o2Þ is independent of y2, the frequency equation (20) becomes

Mdo2 � Kd ¼
1

p

Z p

0

Aðy1;o2Þ
1� ðDMo2 � DKÞAðy1;o2Þ

dy1

� ��1

(28)

and the harmonic influence coefficients shown in Eq. (21) can be expressed as

b�ðm1
j;m2Þðm1;m2Þ
¼
1

p

Z p

0

cos jy1Aðy1;o2Þ
1� ðDMo2 � DKÞAðy1;o2Þ

dy1; j ¼ 0; 1; 2; . . . ;1, (29a)

b�ðm1
j;m2
kÞðm1;m2Þ
¼ 0; j ¼ 0; 1; 2; . . . ;1; k ¼ 1; 2; . . . ;1. (29b)

Eq. (22) representing the localized modes becomes

W ðm1
j;m2Þ ¼ W ðm1;m2Þ

b�ðm1
j;m2Þðm1;m2Þ

b�ðm1;m2Þðm1;m2Þ

; j ¼ 0; 1; 2; . . . ;1 (30a)

and

W ðm1
j;m2
kÞ ¼ 0; j ¼ 0; 1; 2; . . . ;1; k ¼ 1; 2; . . . ;1. (30b)

These results shown in Eqs. (27), (28), (29a) and (30a) are in agreement with those given in
Ref. [21].

6.3. Two-dimensional bi-periodic system with p1 ¼ p2 ¼ 2

Inserting p1 ¼ 2 and p2 ¼ 2 into Eq. (17b) yields

Aðy1; y2;o2Þ ¼
1

4

X2
u¼1

X2
v¼1

K þ 2K1 þ 2K2 � Mo2
�

�2K1 cos ðu � 1Þpþ
y1
2


 �
� 2K2 cos ðv � 1Þpþ

y2
2


 ���1

. ð31Þ

Introducing the non-dimensional parameters

O2 �
Mo2

K
; k1 �

K1

K
; k2 �

K2

K
(32)

into Eq. (31) results in

Aðy1; y2;o2Þ �
1

K
A0ðy1; y2;O2Þ, (33a)

where

A0ðy1; y2;O2Þ �
1

4

X2
u¼1

X2
v¼1

1þ 2k1 þ 2k2 � O2
�

�2k1 cos ðu � 1Þpþ
y1
2


 �
� 2k2 cos ðv � 1Þpþ

y2
2


 ���1

. ð33bÞ
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Substituting Eq. (33a) into Eq. (19), the frequency band equation for the ordered system with
p1 ¼ 2 and p2 ¼ 2 can be expressed as

1� ðDmO2 � DkÞA0ðy1; y2;O2Þ ¼ 0; 0py1; y2pp, (34a)

where

Dm ¼
DM

M
; Dk ¼

DK

K
. (34b)

If the non-dimensional parameters k1, k2, Dm and Dk are given, the pass bands can be
determined by using a numerical method with a little calculation. For the specific case of

k1 ¼ 0:1; k2 ¼ 0:2; Dm ¼ 0:1; Dk ¼ 1 (35)

there are two pass bands as follows:

½1:09857; 2:00000
; ½2:36364; 2:58030
 for O2 (36a)

namely the stop bands are

0oO2o1:09857; 2:00000oO2o2:36364; 2:58030oO2o1. (36b)

By introducing Eqs. (33a), (34b) into Eq. (20), the non-dimensional frequency equation for
localized vibration can be expressed as

F ðO2Þ ¼ DðO2Þ; O2 2 stop bands shown in Eq: ð36bÞ (37a)

where

F ðO2Þ � �MO2 � �K , (37b)

DðO2Þ �
1

p2

Z p

0

Z p

0

A0ðy1; y2;O2Þ

1� ðDmO2 � DkÞA0ðy1; y2;O2Þ
dy1 dy2

� ��1

(37c)

and

�M �
Md

M
; �K �

Kd

K
. (37d)

When the disordered parameters �M and �K are given besides k1, k2, Dm, Dk shown in Eq. (35), the
functions, y ¼ DðO2Þ and FðO2Þ, can be plotted against O2. The number of the points of
intersection between the two curves is equal to the number of localized modes and the transverse
coordinates of the intersection points represent the magnitudes of the non-dimensional
frequencies O2.
By using the numerical integral method and the parameters shown in Eq. (35), the curve, D

versus O2, is plotted in Fig. 3, which is made up of three continuous and monotonically decreasing
curves, corresponding to the three stop bands shown in Eq. (36b). The straight lines, y ¼ FðO2Þ,
corresponding to various disordered parameters, are also plotted in Fig. 3. By observation from
Fig. 3, it is clear that in either case of �Ko0, �M ¼ 0 or �K ¼ 0, �M40, two localized modes will
occur and the corresponding frequencies lie in the first and second stop bands and in either case of
�K40, �M ¼ 0 or �K ¼ 0, �Mo0, only one localized mode with higher frequency in the third stop
band will occur.
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Fig. 3. Functions DðO2Þ and F ðO2Þ for p1 ¼ p2 ¼ 2.
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Consider now the case of Kd ¼ 0:5K , Md ¼ 0, i.e.,

�K ¼ 0:5; �M ¼ 0. (38)

By means of the numerical integral method and graphic representation, the solution of the
frequency equation (37a)–(37d) for O2 can be found as

O2 ¼ 2:89128. (39)

Recalling Eqs. (21), (22), (33a), the localized mode can be expressed as

W ðm1þj;m2þkÞ ¼
I ðj;kÞðO2Þ

I ð0;0ÞðO2Þ
; j; k ¼ 0;
1;
2; . . . ;1, (40a)

where

I ðj;kÞ � Kb�ðm1þj;m2þkÞðm1;m2Þ
¼
1

p2

Z p

0

Z p

0

cos jy1 cos ky2A0ðy1; y2;O2Þ

1� ðDmO2 � DkÞA0ðy1; y2;O2Þ
dy1 dy2. (40b)

The localized mode shown in Eqs. (40a)–(40b) has been normalized according to the condition
of W ðm1;m2Þ ¼ 1. Substituting Eq. (39) into Eqs. (40a)–(40b) and using the numerical integral
method, the localized mode can be found as shown in Table 1. The numerical results show that the
amplitude ratios between the two adjacentM 0-subsystems in x- and y-directions are not constants,
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Table 1

Localized mode with O2 ¼ 2:89128

(a) W ðm1
j;m2Þ

j 0 1 2 3 4 5 6

W 1 0.01958 0.0004261 9:850E� 06 2:373E� 07 5:891E� 09 1:495E� 10

(b) W ðm1 ;m2
kÞ

k 0 1 2 3 4 5 6

W 1 0.06587 0.004447 0.0003040 2:096E� 05 1:455E� 06 1:016E� 07
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namely W ðm1þjþ1;m2Þ=W ðm1þj;m2Þ ðj ¼ 0; 1; 2; . . .Þ and W ðm1;m2þkþ1Þ=W ðm1;m2þkÞ ðk ¼ 0; 1; 2; . . .Þ are
not constants. This property is different from that for one-dimensional periodic systems.
7. Conclusions

In this work, the application of the U-transformation method has been extended to the analysis
of localized modes from one-dimensional bi-periodic mass–spring systems to two-dimensional
systems. In order to utilize completely the property of bi-periodicity in two-dimensional systems,
the proposed method requires the application of the double U-transformation twice. The
governing equation of natural vibration is uncoupled to form a set of single degree of freedom
equations in terms of the harmonic influence coefficients. As a result the frequency equation of the
disordered system and localized modes can be derived.
Two special cases, two-dimensional single-periodic and one-dimensional bi-periodic systems,

are considered. The results for two cases are in agreement with those given in the literature. A
specific two-dimensional bi-periodic system with p1 ¼ p2 ¼ 2 is taken as example. The amplitude
ratios of localized modes between the two adjacent M 0-subsystems are not only different in x- and
y-directions but also variable along x- and y-directions. However, it is well known that the
corresponding amplitude ratio in one-dimensional periodic system is a constant. This is the great
difference between one- and two-dimensional periodic systems.
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